518 research outputs found

    Fundamental Constraints on Multicast Capacity Regions

    Full text link
    Much of the existing work on the broadcast channel focuses only on the sending of private messages. In this work we examine the scenario where the sender also wishes to transmit common messages to subsets of receivers. For an L user broadcast channel there are 2L - 1 subsets of receivers and correspondingly 2L - 1 independent messages. The set of achievable rates for this channel is a 2L - 1 dimensional region. There are fundamental constraints on the geometry of this region. For example, observe that if the transmitter is able to simultaneously send L rate-one private messages, error-free to all receivers, then by sending the same information in each message, it must be able to send a single rate-one common message, error-free to all receivers. This swapping of private and common messages illustrates that for any broadcast channel, the inclusion of a point R* in the achievable rate region implies the achievability of a set of other points that are not merely component-wise less than R*. We formerly define this set and characterize it for L = 2 and L = 3. Whereas for L = 2 all the points in the set arise only from operations relating to swapping private and common messages, for L = 3 a form of network coding is required

    Interference Mitigation Through Limited Receiver Cooperation: Symmetric Case

    Full text link
    Interference is a major issue that limits the performance in wireless networks, and cooperation among receivers can help mitigate interference by forming distributed MIMO systems. The rate at which receivers cooperate, however, is limited in most scenarios. How much interference can one bit of receiver cooperation mitigate? In this paper, we study the two-user Gaussian interference channel with conferencing decoders to answer this question in a simple setting. We characterize the fundamental gain from cooperation: at high SNR, when INR is below 50% of SNR in dB scale, one-bit cooperation per direction buys roughly one-bit gain per user until full receiver cooperation performance is reached, while when INR is between 67% and 200% of SNR in dB scale, one-bit cooperation per direction buys roughly half-bit gain per user. The conclusion is drawn based on the approximate characterization of the symmetric capacity in the symmetric set-up. We propose strategies achieving the symmetric capacity universally to within 3 bits. The strategy consists of two parts: (1) the transmission scheme, where superposition encoding with a simple power split is employed, and (2) the cooperative protocol, where quantize-binning is used for relaying.Comment: To appear in IEEE Information Theory Workshop, Taormina, October 2009. Final versio

    Interference Mitigation Through Limited Receiver Cooperation

    Full text link
    Interference is a major issue limiting the performance in wireless networks. Cooperation among receivers can help mitigate interference by forming distributed MIMO systems. The rate at which receivers cooperate, however, is limited in most scenarios. How much interference can one bit of receiver cooperation mitigate? In this paper, we study the two-user Gaussian interference channel with conferencing decoders to answer this question in a simple setting. We identify two regions regarding the gain from receiver cooperation: linear and saturation regions. In the linear region receiver cooperation is efficient and provides a degrees-of-freedom gain, which is either one cooperation bit buys one more bit or two cooperation bits buy one more bit until saturation. In the saturation region receiver cooperation is inefficient and provides a power gain, which is at most a constant regardless of the rate at which receivers cooperate. The conclusion is drawn from the characterization of capacity region to within two bits. The proposed strategy consists of two parts: (1) the transmission scheme, where superposition encoding with a simple power split is employed, and (2) the cooperative protocol, where one receiver quantize-bin-and-forwards its received signal, and the other after receiving the side information decode-bin-and-forwards its received signal.Comment: Submitted to IEEE Transactions on Information Theory. 69 pages, 14 figure

    Channel Uncertainty in Ultra Wideband Communication Systems

    Full text link
    Wide band systems operating over multipath channels may spread their power over bandwidth if they use duty cycle. Channel uncertainty limits the achievable data rates of power constrained wide band systems; Duty cycle transmission reduces the channel uncertainty because the receiver has to estimate the channel only when transmission takes place. The optimal choice of the fraction of time used for transmission depends on the spectral efficiency of the signal modulation. The general principle is demonstrated by comparing the channel conditions that allow different modulations to achieve the capacity in the limit. Direct sequence spread spectrum and pulse position modulation systems with duty cycle achieve the channel capacity, if the increase of the number of channel paths with the bandwidth is not too rapid. The higher spectral efficiency of the spread spectrum modulation lets it achieve the channel capacity in the limit, in environments where pulse position modulation with non-vanishing symbol time cannot be used because of the large number of channel paths

    Approximate Capacity of Gaussian Relay Networks

    Get PDF
    We present an achievable rate for general Gaussian relay networks. We show that the achievable rate is within a constant number of bits from the information-theoretic cut-set upper bound on the capacity of these networks. This constant depends on the topology of the network, but not the values of the channel gains. Therefore, we uniformly characterize the capacity of Gaussian relay networks within a constant number of bits, for all channel parameters.Comment: This paper is submited to 2008 IEEE International Symposium on Information Theory (ISIT 2008) -In the revised format the approximation gap (\kappa) is sharpene
    • …
    corecore